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Confidence Bands Under Proportional Hazards 1

by

Myles Hollander and Edsel Pefia
The Florida State University
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Asymptotic simultaneous confidence bands are derived for the survival

function under the proportional hazards model of random right-censorship.

These bands are based on the maximum likelihood estimatorq(ME)-,of the survival

function, rather than the well-known product limit estimator 1(PLE).' In the

case where the censoring parameter, denoted by , is known the bands are

asymptotically exact, while when is unknown the bands are asymptotically

conservative. For the case where is unknown, the proposed bands are shown

to be narrower than those proposed by Cheng and Chang (1985). Cs~rgd and

Horvath's (1986) idea of mixing bands is then employed to obtain even narrower

bands. As one would expect, under the more structured model, the PLE-based

band of Gillespie and Fisher (1979) is shown to be inferior to the MLE-based

bands, and this inferiority is more marked as the degree of censoring increases.
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1. Introduction and summary. Let (Xi ,Yi), i=l,...,n, be independent and iden-

tically distributed random vectors. In the proportional hazards model of random

right-censorship, referred to in the sequel as the Koziol-Green (KG) model, Xi

and Yi are independent, the X.i's denote the survival times with continuous

survival function F(t)=P(X>t), and the YiIs denote the censoring times with

continuous censoring function G(t)=P(Y>t). Furthermore, this model asserts that

for some 0z0, possibly unknown, G(t)=F(t)8 for all tO. The censored data consist

of (Zi,5i), i=l,...,n, where Zi=minimum(XiYi), a =I(Xi<Yi) and I(A) is the indi-

cator of event A.

We develop asymptotic (1-a)100% simultaneous confidence bands for F under

the KG model. The bands are based on the maximum likelihood estimator (MLE) of

F for this model. These bands, which are derived in Section 2, are presented in

pairs with the bands in each pair being asymptotically equivalent. The bands in

each pair are of the forms

(1.1) {[Fn(t)fl + rn(t;-)] " , Fn(t)fl - rn(t;-)l , Ot<T}

and

(1.2) {[F (t){l - rn(t;.)) , F n(t){l + rn(t;.))], O5t5T},

where Fn(t) is the MLE of F given in (2.1), and rn(t;-) depends on at least one

tabular value, with the tabular values depending on 0, a, and H(T), where H=FG.

In the case where a is known the bands are asymptotically exact, while when a is

unknown the bands are asymptotically conservative, though less conservative than

bands proposed by Cheng and Chang (1985) under the same model. Cs6rgO and

Horvath's (1986) idea of mixing bands is then employed to obtain narrower mixed

bands. In Section 3 we assess the adequacy of the asymptotic results for finite o
sample sizes. For different values of n, 0, and a, estimates of the achieved

confidence levels for each of the bands are obtained through a computer simulation.

In Section 4 the asymptotic widths of the bands are compared analytically. It is

shown that when B is unknown, some of the bands presented here are narrower than
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those of Cheng and Chang (1985). Furthermore, when B is large and the KG model

holds, the MLE-based mixed bands outperform the Gillespie and Fisher (1979)

band based on the Kaplan and Meier (1958) product-limit estimator (PLE) of F.

The KG model has received considerable attention in the literature. This

model was introduced by Koziol and Green (1976) in the context of developing a

PLE-based goodness-of-fit test for censored data. Earlier, Efron (1967) used a

special case of this model to compare the efficiencies of various two-sample

tests for censored data. Under this model, Csrg5 and Horvath (1981) presented

a PLE-based confidence band and a goodness-of-fit test for F. Their goodness-of-

fit test improved upon that of Koziol and Green (1976)in that their test does

not require that B be known. Also, under the assumption that the KG model holds,

Chen, Hollander and Langberg (1982) and Wellner (1985) obtained the exact moments

of versions of the PLE, and studied the applicability of using the asymptotic

variance of the PLE in place of its exact variance for finite samples. Emoto

(1984) also utilized a special case of +-he KG model in comparing the mean-square

errors of the PLE and the MLE of the survival function.

The importance of the KG model in reliability theory and survival analysis

should not be underestimated. The model arises naturally in reliability studies,

and in particular, in competing risks models (cf. Example 1 of Chen, Hollander

and Langberg, 1982). More importantly, its great tractability enables the study

of the performances and properties of other methods developed for more general

models (such as the random right-censorship model where no structural relation-

ship between F and G is assumed) in settings where these methods are not optimal.

In this spirit, Chen, Hollander and Langberg (1982) and Wellner (1985) were able

to study how well the asymptotic variance of the PLE approximates the exact

variance when the KG model holds. In a similar vein, we are able to study the

Gillespie and Fisher (1979) PLE-based band under the KG model where it has the
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correct asymptotic coverage probability but it is not the preferred band. In many

ways, the KG model assumes a position in reliability models similar to the

role that its precursor, the Lehmann alternatives, has in classical nonparametric

settings such as the one- and two-sample problems. Lehmann's (1953) alternatives

also arise naturally in certain situations, and therefore the tests derived for

these alternatives are of importance in their own right. However such tests

serve also as standards for assessing how much power other competing tests (such

as the Wilcoxon or normal scores tests) sacrifice in models for which they are

not optimal. The KG model and procedures derived under it fulfill a similar

role in the domain of reliability models.

2. Confidence bands for the survival function. The maximum likelihood estimator

of F under the KG model is given by

H t)y if a is known
(2.1) Fn~t)= H (t](n) if 0 is unknown,

n

where y=(l+0f), yn=y(n)=n 11%l ai and Hn(t)=n 1 I= I(Z >t). The parameter y

equals the probability of an uncensored observation, so 0 is referred to in the

sequel as the censoring parameter. For ease of reference, the different pairs

of bands presented below are labelled by An, Bn, ... , Hn, with the bands in each

1 2
pair differentiated by a superscript of 1 or 2, e.g., An A;, etc., according

to whether it is of the form (1.1) or (1.2), respectively. In (1.1) and (1.2)
it will be implicit that Fn(t)=Hn (t)y or Hn(t)y(n) according to whether 0 is

known or unknown, respectively. Furthermore, to facilitate the proofs of some

results, we assume the existence of a basic probability space (0,F,P) such

that the random functions discussed below are measurable maps from ([1,F) to

(D), where the latter is Skorohod's measurable space on [0,T] (cf. Billingsley,

1968, Chapter 3).

We first present the bands for the case where $ is known. With minor

modifications of Theorem 3 of Cheng and Lin (1984), the following weak convergence

3-- _*



result for F n (t)=H n(t)y is obtained.

Theorem 2.1: If 0<T<- with F(T)>O, then W n(t)=n1/2 [F n(t)-F(t)] =: W(t) on [,]

where W(t) is a Gaussian process having zero mean and covariance function

Cov(W(s) ,W(t))=u(s)v(t) for O:5s:5t:T, u(s)=yG(sf-1 [l-H(s)], v(t)=yG(tf-1H(t),

and 11->1 denotes "converges weakly".

Let d-1 (s)=inf{t: d(t) :sl be the inverse of d(t)=u(t)/v(t)=[l-H(t)]/H(t).

Since F and G are continuous then d-1(s) is strictly increasing. By Theorem 2.1

and the transformation of Doob (1949) the following corollary is immediate.

Corollary 2.1: If 0cT<o with F(T)>O, then Wn(t)f[yF(t)] B(d(t)) on D[o,T],

where B(t) is the standard Brownian motion process.

Corollary 2.2: If 0<T<os with F(T)>O, then Wn(t)/[yFn(t)J B~d(t)) on D[0,T].

Notation: In the remainder of the paper, supt will mean suPOst 5T and lim nwill

mean lim_,, except when otherwise stated.

Proof of Corollary 2.2: By Theorem 4.1 of Billingsley (1968,* p. 25) it suffices

to show that suptl(W n(t)/Pn (t)} - {WnCt)/F(t)}I -' 0 almost surely (a.s.). By

the continuous mapping theorem (Billingsley, 1968, Theorem 5.1), suptlW n t)I

suIptIW(t)l in distribution. Since P{suptIW(t)I<m}=l, it therefore remains to

show that suptl{l/Fn (t)} - {l/F(t)}f -+ 0 a.s.

Let e=F(T)>O and take w 0  =weQi: suptiHn(t) - H(t)j I 01. Then there exists

an integer NNwe)such taHn t;>e21Yfor all n~tN. Thus for this wo and

n2:N, suptl{l/F n(t))} {1/F~t))152e-2 suptIF n(t) -F(t)1=2e-2 sup IH n(t)yK (t)YI +0O.
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Let QT(Al,%x2) denote the probability that the process B(t) lies between

the lines -( + X 2t) and (X 1 + 'X2 t) for all O~gt T. From Anderson (1960), we

find that forX1>0

QT(XlA 2)=Pf IB(t)I:5Xl + X2t, Or-t:T}

(2.2) =1-20[(-,X2 T-A 1)/T 
1/2 -2 1 exp(-2 1 Ix2 k 2)

where 0(-) is the cumulative distribution function of a standard normal variable.

Also, denote the empirical version of d(t) by dn(t)=[-nt]H~) Then the

following theorem provides the An t Xa) bands.
n'1' 2)

Theorem 2.2: Let 0<a<l and 0<T<- with F(T)>0. Then the bands in (1.1) and

(1.) wth n ' a,a2)=- '/2y[X +a dn Ml are asymptotic (1-a)100% simultaneous

confidence bands for F on [0,T] whenever Qd(T)(A1 2=~a

Proof: By the choice of Xaand Xa , and Corollary 2.*1,

=P{IB(d(t))I,,a~ + a d(t), 0st~gT}

(2.3) =limnp{ tWn~t)/(YF(t)] I5Xa + a ~d(t), o5t5T}.

A similar argument as in Corollary 2.2 shows that suptldn(t) -d(t)j - 0 a.s.,

so for arbitrary e>0, (2.3) can be bounded from below and above by

limnp{IWn(t)/[_fF(t)jjI a~ + )a [dn(t) ±f], 05t:5T}. Since F- is arbitrary, it follows

that l-c=limnP{jWn(t)/[yF(t)],,a~ + Xad (t), 05t5T}. Inverting the set inside the

braces for F(t) yields the band in (1.1) with rn Ct ;),a,, given in the theorem. A

similar argument with Corollary 2.2 instead of Corollary 2.1 yields the band in

(1.2). 11

Confidence bands for F are also derivable from transformations to the Brownian

bridge process B O(t). In contrast to the PLE (cf. Hall and Wellner, 1980), the

limiting process W(t) in Theorem 2.1 can be transformed in two ways to B 0t).
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Theorem 2.3: If O<T<oa with F(T)>O, then

(i) {B 0(L(t)))lO~t:5T4= {W(t) [l-L(t)]/F(t)IO~gt:5T

(ii) {B(B -~t 055T= I W(t)H~)/[Ft I05-5

wher 111means equal in distribution, and L (t)=Y2 [l-H(t)]/{H(t)+ 2[_t]=

y 2d(t)/[l + y 2d(t)].

Cheng and Chang (1985) proved (i), and since the proof of (ii) is straight-

forward, it is omitted here.

Corollary 2.3: If O<Tcam with F(T)20, then

(i) Wn~t)[l-L(t)]/F(t) B 0(L(t)) on D[O,T],

(ii) Wn(t)H(t)/[-yF(t)] B 0(l-H(t)) on D[O,T].

Proof: The results follow from Theorem 2.1 and Theorem 2.3. I

Corollary 2.4: If 0<T<- with F(T)>0, then

(i) W n(t)(l-L(t)]/Fn(t) ==. B0(L(t)) on D(O,TI,

(ii) W n t)H(t)/yF n (t)]1 = B 0(l-H(t)) on D[0,T].

The proof of this corollary is analogous to that of Corollary 2.2 except

that we use Corollary 2.3 instead of Corollary 2.1.

Crossing probabilities of the Brownian bridge process B O(t) have been well-

studied in the literature (cf. Doob(1949), Anderson (1960), and Hall and Wellner

(1980)). Here we only need to know that for 0<T<l,

(2.4) P{suptIB 0 (t)I1:5 QT,(l-T) (,X).

We now present the B n(t;X b) and C n(t;X ) pairs of bands, respectively.

Theorem 2.4: Let O<a<l and O<T<oa with F(T)>0. Then the bands in (1.1) and

(1.2) with

(i) rn (t;X b)=n /2Xb 1+ d n(t),

(ii) r nCt;XLc)=nl /2 Xcy/H nCt)

6



are pairs of asymptotic (l-a)100% simultaneous confidence bands for F on [0,T]

whenever l-a=Qy2d(T) b I b)=Qd(T)A ( Cx c).

Proof. Cheng and Chang (1985) proved the result for band (1.2) with rn (t;.)

given by (i). The proof for band (1.1) with rn(t;-) given by (i) is similar.

Below, we just present the proof for the bands with rn(t;-) given by (ii). By

the choice of X we have

l-Q=QdT) (XC c)=Q[I-H(T)]/HCT) (Ac Xc)

=P(suPo5t~lHCT) IBO(t)I<5Ac} (by 2.4)

=P{suptI B0 (1-H(t)) IS c)

=limnP{suPt I Wn(t)H(t / [,F~t) ] l5.
c }

by Corollary 2.3(ii). Since yn and Hn(t) are uniformly strongly consistent

estimators of y and H(t), the above expression is

--limnP~suPtliW n (t)Hn (t) /[yn
F Ct) ]1: < c}.

Inverting the set inside the braces for F yields the band (1.1) with rn(t;-) given

by (ii). A similar argument using Corollary 2.4(ii) yields the other band. II

In contrast with the case where a is known, it is difficult to construct

asymptotically exact (l-a)100% simultaneous confidence bands when a is unknown.

The explanation for this is deferred until after the statement of Theorem 2.5.

Cheng and Lin (1984) gave the following representation for Fn (t)=Hn(t)Y(n),

the MLE of F(t) when B is unknown:

(2.5) Zn (t)=nl/2 [Fn(t)-F(t)]=Wn (t)+Vn (t)+Rn (t)

where

W n (t) -yG (t)- In1/2 [Hn (t)-H(t)], Vn(t)=yF(t){tnF(t) 1/2 (yn-y),

with suptIRn(t)I=0(t n(n)/n 1/2) a.s. This representation, in conjunction with

the functional and univariate central limit theorems, implies the following

weak convergence result.

7



Theorem 2.5: If O<T<- with F(T)>O, then Zn(t) Z(t), where Z(t) is a Gaussian

process having zero mean and covariance function Cov(Z(s),Z(t))=u(s)v(t) +

w(s)w(t) for 0<sst T, where u(s) and v(t) are defined in Theorem 2.1, and

w(s) =8 1 / 2F(s)nF (s).

The form of the covariance function of the limiting process Z(t) precludes

the possibility of transforming Z into the Brownian motion process and/or the

Brownian bridge process B (t). This prevents us from obtaining exact asymptotic

confidence bands for F through the use of the function QT(I,)2) in (2.2). An

ambitious program of deriving crossing probabilities of Z(t) might be possible,

but the difficulty might far outweigh the benefits of such a program. We shall

therefore content ourselves with asymptotically conservative bands.

From (2.5) it is clear that the limiting process can be represented by

Z(t)=W(t) + V(t) where W(t) is defined in Theorem 2.1 and V(t) is of the form

(2.6) V(t)={B 1/2F(t)fnF(t)}N,

where N is a standard normal random variable. Furthermore, since Zi and 6i are

independent under the KG model (cf. Armitage (1959), Allen (1963), and Sethuraman

(1965)), the limiting processes W(t) and V(t) are independent.

Theorem 2.6: Let O<a<l and O<T<- with F(T)>0. Then the bands (1.1) and (1.2)

with
d d -/2 d 2d 1/2

(i) r n(t;Xd ,d) f= /2{Xd 1 + y2 dn(t)] dn zM + n nFn(t)I}, and

(ii) r (t;Xe'Xe'ze) =n-1/2 { e ,e)] + z e12nFn(t)JI
n 1' 2 )n 1 2 X~n n)-8

are pairs of conservative asymptotic (1-a)100% confidence bands for F on [0,T]

whenever 1-af2d(T)X dXd)[20(zd)l]=Qd(T)( 2 2ze)l] where 8 n=(1-Yn)/Yn.

The resulting pairs of bands are respectively referred to as the D n(t;Xd Z

and E (t;l,e2,e z e ) bands. Band D2(t;A d,zd ) was introduced by Cheng and Chang (1985).

8



1 ee eBelow we present only the proof of band En (t;A2, X2,z )since the proofs for the

other bands are similar.

Proof of Theorem 2.6: By choice of 1 2,Ae n z eand by Corollary 2.1,

l-c=P1 jW(t)/[yF(t)]I<Xe + e d(t), Ost5TI.P{IN5z e}I

! P{IW(t)/[YF(t)]I +IV(t)/[.yF(t)]I ,[Xe + e d(t)]+

5p{IZ(t)/[,F(t)]I. 1Xe + e d(t)I + ze 1/2 (a.l)tnF(t)l, O:5t:T}.

Using the strongly consistent estimators y n9 d n(t), B and F n(t) for y, d(t),

B and F~t), respectively, and by Theorem 2.5, the preceding probability is

=lim p{lZn(t)/[YnFt1!1' + + n n (t)I+1zOIanTn.

Inverting the set inside the braces for F(t) yields the band E
1 (t;Xe Xz)
n 1'2

Notice that the first inequality in the proof is a very weak one. This

makes the Dn-bands and En-bands extremely conservative. We could have obtained

similar bands based on the Brownian bridge transformation in Corollary 2.3(ui)

and Corollary 2.4(ui), but since these bands are extremely conservative we do

not pursue them. Instead, the Fn (txf)and G n~~g pairs of bands will now be

developed.

For X>O define the distribution functions Q(l) (X) and Q (2) (X) as

(.) T 1o (2/r) f ier (T) -xX-x)

exp{-.(1/2)[x/cl('r)] 2}dx

* and

(2.8) Q (2) (A)=[C (T)]f 1 (2/r) 1 /2 X~~(-xXx

exp{-(1/2)[/2() 2)x

where

9



0 1/2 r(T)IenH(T)I if y2+y £nH(T) +(1-y2 )H(T)zO
c I(T)= 8 1/2 E*(t 0 ) jtnH(t 0 )l if y 2+y LnH(T)+(l-y 2)H(T)<O

with t 0 being the solution of the transcendental equation y 2+y 2 nH(t)+(1-y 2)H(t)=O,

EC(t)=1-L(t), and

0 12 HT)ienH(T)I if H(T)2:exp(-1)

8 T= / exp(-l) if H(T)exp(-1).

Theorem 2.7: Let 0ca<l and 0<T<ao with F(T)>0. Then the bands (1.1) and (1.2)

with
f )=-1/2 xf 1Y2d(t]an

i)rn (t;X n n lydCt] n

are pairs of conservative asymptotic (1-aL)100% simultaneous confidence bands

for F on [0,T] whenever 1-=%( A)= = 2 ) .

Proof:, We present only the proof for band (1.1) with rnCt;.) given in (i). The

proofs of the others are analogous. By Theorem 2.5, we have

- f=P~suptlW(t)(t)/P(t) + V(t)L(t)/F(t) jS)x I

f P{suptlB (L(t))15 fx xdP~suptIV(t)E t)/F(t) IsX
0

by Theorem 2.3(i) and the Convolution Theorem. But by (2.6), {suptjV(t)E(t)/F(t)j! x}

={IN[!5x/[suptI8 1/2L~t)tnH(t)ID1, and since cl(T)=suptl8"k/2Et)ZnH(t)I, then

which by the choice of X and the fact that L(T)/[l-L(T)]=y d(T) equals% (X)1a

Substituting the uniformly strongly consistent estimator E (t)=[l~y 2d (t)]- forn n n

11 f

band F1. (t;)x).I

10



The pairs of bands in Theorem 2.7 are respectively referred to as the

F n(t;x f ) and G n(t;g ) bands. To compute the constant c1 (T) in the distribution

(1)(A) in (2.7) a transcendental equation has to be solved. However, since the

bands are asymptotically conservative, we might lessen this conservatism by

using c*(T) instead of cl(T), where the former is defined as

81/2t(T) ItnH(T)j if y2+y 2 n(T)+(l-y 2)H(T)0
l+y 2(e-1)] - 1  if y 2+y2tnH(T)i+(l-y 2)H(T)<O.

Note here that since c*(T)<c (T) the tabular value Xf obtained using c*(T) will

be at most the tabular value obtained using c1 (T).

To facilitate the use of the F n(t;) f) and G n(t;Xg) bands, selected percentiles

(1) (2)for the distributions T (1) and T (X) are given in Tables 1 and 2, respectively.

In cmputng he prcetile of(1)In computing the percentiles of QT (A) in Table 1, c*(T) was used in place of

S1 T). The IMSL routine DCADRE was employed to perform the numerical integration

in (2.7) and (2.8). To use Tables I and 2, the user needs to know the values

of $ and F(T), or at least the values of n and Fn(T) , the latter quantities

being the strongly consistent estimators of 8 and F(T), respectively. This

technique of substituting empirical versions in place of unknown quantities

is also required for determining the tabular values of the other bands. Clearly,

the finite sample properties of the bands will be affected by substituting these

empirical versions, but the asymptotic properties will remain unchanged.

By examining the upper and lower contours of the bands in each pair, one

notes that the lower and upper contours of band (1.1) are always above the

corresponding contours of band (1.2), with the relationship for the upper

contours holding whenever 1-rn(t;.)>O. We could therefore adapt the idea of

Cs5rg8 and Horvath (1986) of mixing the bands in each pair to obtain a

narrower band. For example, we could define

A*(t.a a;, A a 1 a a 2  a a
n ; 2A n (t;Xl, 2 n An(t;lX 2)

11
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as the An -mixed band. One must however be cautious in using such mixed bands

since as pointed out in Csorgo and Horvath (1986), the finite sample coverage

probability might be nowhere from the nominal asymptotic coverage probability

of 1-a if the bands being mixed are appreciably different. This idea of mixing

bands to obtain narrower ones is however very appealing for the case where B

is unknown, since the bands being mixed are asymptotically conservative and

the mixed bands might still turn out to have finite sample coverage probabili-

ties of at least 1-a.

Our comparisons in Sections 3 and 4 include the PLE-based GF-type bands

(cf. Gillespie and Fisher, 1979 and Cs6rg8 and Horvith, 1986). This pair,

labelled the Hn(t;hX,A2) bands, are given by

(2.9) Hn1(t;) h)lA2 {[Sn t{ n h h -1n t;11,X2)=[n(t){1 + rn(t;'XlIXh) 1 ,

1h Xh

Sn(t){l - rn(t;i h -l

and

( ) 2 hXh)={[Sn(t){1 - rn(t;hh(2.10) Hn(t;. 1  h-h2)}

in 1'2 n n 12

Sn~t){l + rn(t;X1 , x2)1], 0<t<T},

where rn (t;)L 2) =n- 1 nhd*(t)]

Qyd(T)(Xlx 2) = 1-c,

in (t) = [Sn u)Hn (u) ]-dSn (u),

and Sn Ct) is the PLE of F. The PLE is defined as

Sn (t) =1i :Z.i <5t [ (n-R i) /(n-R i+1) ] SiI(t<maxl<i:n Zi),

where Ri is the rank of Zi in the lexicographic ordering of (Zi,6i), i=l,...,n,

and with the convention that the product over an empty set equals 1.

3. Adequacy of the asymptotic results for finite samples. To assess the adequacy

of the asymptotic results for finite sample sizes, a computer simulation was

performed to obtain estimates of the error probabilities of the bands 
A2  H2

13



For each combination of n, B and a, 500 randomly censored samples were generated

via the KG model with F exponential with scale parameter 1 and G exponential

with scale parameter a. For each of these 500 samples, the asymptotic (1-a)100%

simultaneous confidence bands A 2  
. H2 for F on the interval [0,1] were

n n

constructed. The proportion among the 500 bands that did not contain F(t) on

the interval [0,1] was then determined for each of the bands A 2 . H2 . Then n

values of n were set to SO, 100 and 200, while the asymptotic error levels a

were set to 0.01, 0.05 and 0.10. The censoring parameter B took the values 0.5,

1.0 and 2.0, which amounted to 33%, 50O and 67% censoring, respectively. This

simulation was performed on a Cyber 730 computer at the Florida State University

Computer Center. The uniform random number generator used was the intrinsic

routine RANF, and a result by Lurie and Hartley (1972) concerning the sequential

generation of ordered samples without recourse to sorting was employed.

Table 3 is a swmary of the asymptotic tabular values [that is, in computing

the tabular values we used the known values of B, F(t) and G(t)] utilized in

constructing the bands for the different values of B and a. We imposed the
ee hha a

restriction Xe=,2 and A =Xh , while the tabular values X1 and X2 were chosen so1 12 1a

the asymptotic widths of A2(t; a,)a) at t=0 and t=l/2 were approximately equal.

Tables 4a-c are summaries of the observed error probabilities. Based on

these results, the following rough conclusions can be made:

(i) When the censoring proportion is small (B=0.50), the asymptotic error

level serves as an acceptable approximation to the true error level of the bands

for moderate sample sizes. This conclusion is supported by the fact that the

2 2 2
observed error levels of the asymptotically exact MLE-based bands A Bn and Cn,
and the PLE-based band H2 are close to a. However, as $ increases from 0.5 to

n

1.0 and 2.0, the observed error levels for n=50 are far from a although they

do get closer to a when n is increased. Thus, generally, the more censoring

14
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there is, the larger the sample needed for the asymptotic levels to serve as

good approximations to the finite sample error levels of the bands.

(ii) The bands Dn2 (t;A d,z ) and D 2(t;e,,e ,z e) are extremely conservative,% n

while F2(t;A f ) and G nt;Xg) are less conservative than D n and En2V with F n tending
2

to be less conservative than Gn .

4. Comparison of widths of the bands. In this section we present analytic

comparisons of the asymptotic widths of the bands, and determine regions where

each tends to perform well. Let w n(t;-) denote the width of the bands (1.2) and

(2.10), and define the asymptotic width to be limnw n /2Wn(t;-). To distinguish

which pair of bands is referred to, let

(4.1) Xe (t;*)=lim nn 1/2n(t; )=2F(t)limnn /2rn(t;•) a.s.,

where e is the letter label of the pair of band, e.g., XA(t;XI,Xa) is the asymp-

totic width of pair An . In (4.1) we used the strong consistency of F n(t) and

Sn(t) for F(t), and the fact that the asymptotic widths of the bands in (1.1)

and (1.2), and in (2.9) and (2.10) are equal. Table S is a summary of the

asymptotic widths of the different pairs of bands, and the conditions that their

corresponding tabular values must satisfy. The asymptotic width of the PLE-based

H n-band is obtained by noting that

dn(t ) =-f~t [S n (U)Hn(U)I ]-dSn(u) - + yd(t) a.s.

when the KG model obtains.

To simplify our comparison below we assume that X a.=a2a e I= e and

Ah=hh= . Under the first assumption, band Cn is identical to band An. We
17 2 nn

now compare the asymptotic widths of the bands for the case where 8 is known.

Since d(T) yd(T)y 2d(T) it follows from (2.2) that a>,h>,b. This

immediately implies that xB(t;b )<xH(t;X hAx h ) for 05t<T, and the difference

in asymptotic width is2F(t){( h b) + yd(t)(X h_y b)} which gets large for large t.

16



The effect on this difference due to a change in B is not very clear since

Ab and Xh both depend on B. Nevertheless, by acting as if Xbg h, which is

indicated by Table 3, the maximum difference occurs at approximately 0=1 and

decreases as B becomes different from 1 in either direction. On the other

hand, the difference in asymptotic widths of bands Hn and An is

2F(t){( _-Xay) + yd(t)( h-a )}, and since Table 3 also indicates that Xh a =Ac

this difference is positive and increases with either an increase in B or a

decrease in t. Thus, both MLE-based bands outperform the Gillespie-Fisher PLE-

based band in terms of their asymptotic widths.

It is a simple algebraic exercise to show that

XA(t;Xa,Xa) XB(t;Xb ) tH_ l{y(a-yb )/[2b(1-y2

Since Xa>,b it follows that H"1 {y (,a~yb) / [b (1.y2) ]1<H-l{y/(l+y)}= F - 1 {[y/(l+y)]Y}.

Furthermore, since {y/(l+y)} decreases rapidly from 1.0 to 0.5 as 8 increases from

0 to 1, we deduce that the interval {t: XA(t; a,a )<XB(t; b) gets shorter as B

increases, but does so at a slow rate. Adapting again the idea of a mixed band,

we can define the band

(AB)n(t;,a, Xb ) = A n(t;Xa,Xa ) n Bn(t;b),

which would still be an asymptotically (1-a)100% simultaneous confidence band for

F, but whose finite sample coverage probability might be much less than 1-a.

d e
Similar results carry over to the case where B is unknown. Setting z =z

we have

XD(t;Ad zd )xE(t; e, e,ze ) ... t<H-l{y(_- d y)/[U d(1-y ] },

and

XF(t;X faXG(t;Xg )  t= H l {y(xg- f y)/[7 f (1-y2

Thus the En- and Gn-bands are narrower for small t, while the Dn- and Fn-bands

are narrower for large t. From the derivation of the bands in Section 2 and

the simulation results of Section 3 we have seen that the Dn- and E n-bands are

extremely conservative. Intuitively, we therefore expect them to be wider than

17



Table 5. Asymptotic Widths of the Pairs of Bands A. to Hn with

Corresponding Requirements for Their Tabular Values

Ban, e [2F(t)] 1lX (t;-) Requirements for
e Tabular Values

A y[a+,a d(t)] QdT( , )=l-a

B X b [1 2 d(t)] ydT(bXb)=-

C xCy/H(t) Cd(T xcx)=l-a

D xd l~2 d ()+zd4, nFtjQ~ ()Xd d d

D 1~ [ 2 d(t)].z 12.n F(t)j Qd(T)(Yed, e e)[2( )-l=l-ci

F L x[ley2 d(t)]Q 1(f=a

G Xg/~)()(g=-

H [XhX2yd(t)] Qyd(T) (QX 2)=l-z

18



the less conservative bands Fn and G n . We show this below. From Table 5 it

is easy to verify that XE(t;Xe,Xe,ze)>XG(t;Xg) if and only if t satisfies the

transcendental equation

(4.2) H~t) H~t) <exp{- eg- e)/ ea1/2

The function in the left side of (4.2), which is graphed in Figure 1, has a

minimu value of 0.6922 at H(t)=exp(-l), and drops rapidly from 1.0 and slowly

climbs back to 1.0 as H(t) varies from 0 to 1. This is the reason why the

interval {t:XE t;,e.,e,ze>x G t;kg)} is wide. For example, using the tabular

values in Table 3 and referring to Figure 1, the Gn- band is narrower than the

En-band in the approximate intervals (0.07,2.46), (0.08,1.5s) and (0.07,0.93)

for 0=0.5, 1.0 and 2.0, respectively. Similarly, XD(t;X d,zd )xFCt;X f) whenever

t satisfies

H (t) H (t) <5exp{-( ( f- X d )/ [z zda/2 (0+1)11 .

Referring again to Figure 1 and using the tabular values in Table 3, we find

(0.05,2.71), (0.03,2.13) and (0.02,1.64) to be the approximate intervals where

band Fn is narrower than band Dn for 8=0.5, 1.0 and 2.0, respectively. For all

practical purposes, we can therefore consider the Fn - and Gn - bands to be

narrower than the Dn -  and En-bands in the regions where they perform well. As

in the case where a is known, we could also define the mixed band

(FG) n(t;L , g ) = F n(t;;X) n G n(t;xg)

which will be narrower on almost the whole region of interest as compared to the

other bands presented. The simulation results in Section 3 indicate that band

(FG) n may still be conservative.

The PLE-based GF-type Hn-band is wider than the Fn - and G n-bands whenever

t:H -1 (n) and t<H- 1 (&), respectively, where n={y( fy-X h h/{E(l-y) h-Xf(l+y)]

and &){y(xg-xh}/{x h(1-y)}. To get some idea on these changeover points, notice

that except for the case 8=0.5 and a=0.10 in Table 3, H 1(n)!H-1 (). Thus, in

19
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Figure 2a. Plots of 90% Confidence Bands for Randomly

Generated Data Under the KG Model with 8=0. 5
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Figure 2b. Plots of 90% Confidence Bands for Randomly

Generated Data Under the KG Model with 8= 1. 0
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Figure 2c. Plots of 90% Confidence Bands for Randomly

Generated Data Under the KG Model with a = 1.5
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most situations we expect band (FG)n to be narrower than band Hn on almost the

whole region of interest.

In Figures 2a-d we present superimosed plots of the NILE-based bands D 2
n

an' n a Gn, and the Gillespie-Fisher PLE-based band H 2n These bands are asymp-

totic 90% simultaneous confidence bands for F based on four randomly generated

sets of censored data each of size 100. The MLE and the PLE of F are also

plotted. In plotting the bands and estimators via the Versatec plotter, we

have taken the liberty of connecting adjacent points by straight lines. The

four data sets were generated via the KG model considered in the simulation,

with the censoring parameter a taking values 0.50, 1.00, 1.50 and 2.00. In

constructing the bands, T was set equal to 1.0. Notice that when 8 is small

the differences among the bands are not very apparent, but as B increases the

differences among the bands are clear-cut. These plots are consistent with

our analytical results showing the Fn - and Dn-bands are narrower for large t,

and the Gn- and En-bands are narrower for small t. The small interval emanating

from 0 where band En is narrower than band Gn is also visible in Figures 2a-d.

Finally, under the KG model it is seen that the PLE-based band holds its own

with the MLE-based bands when the censoring proportion is small (a=0.50), but as a

increases it is easily outperformed by the MLE-based bands.
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